\begin{tabbing} fifo+property(${\it es}$;${\it codes}$;${\it decodes}$;$C$;$S$;$R$;$T$;${\it Req}$;${\it Ack}$;$i$;$f$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=antecedent{-}surjection(${\it es}$;$\lambda$$e$.$R$($i$,$e$);$\lambda$$e$.$\exists$$j$:$C$. ($S$($j$,$i$,$e$));$f$)\+ \\[0ex]\& (\=$\forall$$e$:\{$e$:es{-}E(${\it es}$)$\mid$ $R$($i$,$e$)\} , $j$:\{$j$:$C$$\mid$ $S$($j$,$i$,$f$($e$))\} .\+ \\[0ex]${\it decodes}$($i$,$e$,es{-}state{-}when(${\it es}$;$e$)) = ${\it codes}$($j$,$i$,$f$($e$),es{-}state{-}when(${\it es}$;$f$($e$))) $\in$ $T$) \-\\[0ex]\& (\=$\forall$$e$:\{$e$:es{-}E(${\it es}$)$\mid$ $R$($i$,$e$)\} , ${\it e'}$:\{$e$:es{-}E(${\it es}$)$\mid$ $R$($i$,$e$)\} , $j$:$C$.\+ \\[0ex]($S$($j$,$i$,$f$($e$))) $\Rightarrow$ ($S$($j$,$i$,$f$(${\it e'}$))) $\Rightarrow$ es{-}causle(${\it es}$;$f$($e$);$f$(${\it e'}$)) $\Rightarrow$ es{-}causle(${\it es}$;$e$;${\it e'}$)) \-\\[0ex]\& (\=$\forall$$j$:$C$.\+ \\[0ex]$\exists$\=${\it req}$:\{$e$:es{-}E(${\it es}$)$\mid$ ${\it Ack}$($j$,$i$,$e$)\} $\rightarrow$\{$e$:es{-}E(${\it es}$)$\mid$ $S$($j$,$i$,$e$) \& ${\it Req}$($j$,$e$)\} \+ \\[0ex](antecedent{-}surjection(${\it es}$;$\lambda$$e$.${\it Ack}$($j$,$i$,$e$);$\lambda$$e$.$S$($j$,$i$,$e$) \& ${\it Req}$($j$,$e$);${\it req}$) \\[0ex]\& (\=$\forall$$a$:\{$e$:es{-}E(${\it es}$)$\mid$ ${\it Ack}$($j$,$i$,$e$)\} .\+ \\[0ex]$\exists$$e$:\{$e$:es{-}E(${\it es}$)$\mid$ $R$($i$,$e$)\} . ($f$($e$) = ${\it req}$($a$) $\in$ es{-}E(${\it es}$) \& es{-}causle(${\it es}$;$e$;$a$))) \-\\[0ex]\& causal{-}order{-}preserving(${\it es}$;$e$.${\it req}$($e$);$e$.${\it Ack}$($j$,$i$,$e$)))) \-\-\- \end{tabbing}